Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745100

RESUMEN

A comprehensive understanding of inflorescence development is crucial for crop genetic improvement, as inflorescence meristems give rise to reproductive organs and determine grain yield. However, dissecting inflorescence development at the cellular level has been challenging owing to a lack of specific marker genes to distinguish among cell types, particularly in different types of meristems that are vital for organ formation. In this study, we used spatial enhanced resolution omics-sequencing (Stereo-seq) to construct a precise spatial transcriptome map of the developing maize ear primordium, identifying 12 cell types, including 4 newly defined cell types found mainly in the inflorescence meristem. By extracting the meristem components for detailed clustering, we identified three subtypes of meristem and validated two MADS-box genes that were specifically expressed at the apex of determinate meristems and involved in stem cell determinacy. Furthermore, by integrating single-cell RNA transcriptomes, we identified a series of spatially specific networks and hub genes that may provide new insights into the formation of different tissues. In summary, this study provides a valuable resource for research on cereal inflorescence development, offering new clues for yield improvement.

2.
Int Immunopharmacol ; 129: 111647, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38335659

RESUMEN

BACKGROUND: Fibroblasts are necessary to the progression of cancer. However, the role of fibroblasts in peritoneal metastasis (PM) of gastric cancer (GC) remains elusive. In this study, we would explore the role of fibroblasts mediated cell interaction in PM of GC. METHODS: Single-cell sequencing data from public database GSE183904 was used to explore the specific fibroblast cluster. Fibroblasts were extracted from PM and GC tissues. The expression level of CXCR7 was verified by western blot, immunohistochemistry. The role of CLDN11 was investigate through in vitro and in vivo study. Multiple immunohistochemistry was used to characterize the tumor microenvironment. RESULTS: CXCR7-positive fibroblasts were significantly enriched in PM of GC. CXCR7 could promote the expression of CLDN11 through activation of the AKT pathway in fibroblasts. Fibroblasts promote the GC proliferation and peritoneal metastasis by secreting CLDN11 in vitro and in vivo. Furthermore, it was revealed that CXCR7-positive fibroblasts were significantly associated with M2-type macrophages infiltration in tissues. CONCLUSION: CXCR7-positive fibroblasts play an essential role in PM of GC via CLDN11. Therapy targeting CXCR7-positive fibroblasts or CLDN11 may be helpful in the treatment of GC with PM.


Asunto(s)
Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Neoplasias Peritoneales/genética , Fibroblastos/metabolismo , Transducción de Señal , Línea Celular Tumoral , Proliferación Celular , Microambiente Tumoral , Claudinas
3.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964640

RESUMEN

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Asunto(s)
Rosa , Rosa/genética , Rosa/metabolismo , Ácido Ascórbico/metabolismo , Genes de Plantas , Cromosomas , Evolución Molecular
5.
Nat Genet ; 55(11): 1976-1986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932434

RESUMEN

Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.


Asunto(s)
Allium , Allium/genética , Fitomejoramiento , Cebollas/genética , Genoma , Cromosomas
6.
Nanoscale Horiz ; 7(11): 1411-1417, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36093895

RESUMEN

Electronic skins have attracted significant research interest in the biomedical engineering field including wearable devices, artificial prostheses, software robots, and so on. However, the integration of electronic skin for use in rehabilitation exercise remains unexplored. Here, we propose a novel, conductive structurally colored composite hydrogel for use as a robotic knuckle rehabilitation skin. It was found that the composite structure has an obvious color variation and electromechanical properties during the bending process. Therefore, this film could be used as a multi-signal response electronic skin to achieve real-time color sensing and electrical response, as well as for the human knuckle rehabilitation robot. These results indicated that the structurally colored composite hydrogels are valuable for use in many practical biomedical rehabilitation exercises where they are used as an electronic skin to give real-time color sensing and electrical response, and as well can be used in a human knuckle rehabilitation robot.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Dispositivos Electrónicos Vestibles , Humanos , Conductividad Eléctrica , Hidrogeles/química
7.
Nucl Med Commun ; 43(11): 1143-1154, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36120812

RESUMEN

BACKGROUND: Cardiac magnetic resonance (CMR) has been recognized as the gold standard for the evaluation of left ventricular (LV) function. Cardiac gated PET allows the simultaneous assessment of LV function with the evaluation of myocardial perfusion and metabolism. But the correlations between PET and CMR remain controversial. METHODS: We conducted a systematic electronic search of PubMed, Embase and the Cochrane Library . Forest plot, spearman correlation analysis and Bland-Altman analysis were used to evaluate the correlations between PET and CMR. RESULTS: Pooled analysis of 13 studies showed that PET underestimated left ventricular end-diastolic volumes (LVEDV) [mean difference (MD), -15.30; 95% confidence interval (CI), -23.10 to -7.50; P < 0.001] and left ventricular end-systolic volumes (LVESV) (MD, -6.20; 95% CI, -12.58 to 0.17; P = 0.06) but not left ventricular ejection fraction (LVEF) (MD, -0.35; 95% CI, -1.75 to 1.06; P = 0.63). Overall, there were very good correlations between PET and CMR measurements for LVEDV ( r , 0.897), LVESV ( r , 0.924) and LVEF ( r , 0.898). Subgroup analysis indicated that LVEDV ≥180 ml and LVEF <40% reduced the accuracy of PET, especially the measurement of LVEF ( r , LVEDV ≥180 vs . r , LVEDV < 180 : 0.821 vs. 0.944; r , LVEF < 40% vs . r , LVEF ≥40% : 0.784 vs. 0.901). CONCLUSIONS: Correlations between PET and CMR measurements of LVEDV, LVESV and LVEF were excellent, but these two methods could not be used interchangeably for accurate measurements of LV volume and LVEF in patients with significantly increased LV volume and decreased LVEF.


Asunto(s)
Ventrículos Cardíacos , Disfunción Ventricular Izquierda , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Volumen Sistólico , Función Ventricular Izquierda
8.
Biosens Bioelectron ; 134: 16-23, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952012

RESUMEN

Saliva has been reported to contain various cytokine biomarkers which are associated with some severe diseases such as cancers. Non-invasive saliva diagnosis using wearable or portable devices may pave a new avenue for monitoring conditions of the high risk population. Here, a graphene-based fully integrated portable nanosensing system, the entire size of which is smaller than a smart-phone and can be handheld, is presented for on-line detection of cytokine biomarkers in saliva. This miniaturized system employs an aptameric graphene-based field effect transistor (GFET) using a buried-gate geometry with HfO2 as the dielectric layer and on-line signal processing circuits to realize the transduction and processing of signals which reflect cytokine concentrations. The signal can be wirelessly transmitted to a smart-phone or cloud sever through the Wi-Fi connection for visualizing the trend of the cytokine concentration change. Interleukin-6 (IL-6) is used as a representative to examine the sensing capability of the system. Experimental results demonstrate that the nanosensing system responds to the change of IL-6 concentration within 400s in saliva with a detection limit down to 12 pM. Therefore, this portable system offers the practicality to be potentially used for non-invasive saliva diagnosis of diseases at early stage.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Grafito/química , Interleucina-6/análisis , Saliva/química , Tecnología Inalámbrica/instrumentación , Biomarcadores/análisis , Citocinas/análisis , Diseño de Equipo , Hafnio/química , Humanos , Límite de Detección , Óxidos/química , Teléfono Inteligente/instrumentación , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...